Stainless Steel and Alloys in Transport

Recent developments and Aperam’s vision on tomorrow
Stainless Steel and Alloys in transport

Topics

• Introduction of Aperam
• Stainless steel in transport
• Examples (grade selection)
• Trends and solutions for the future
Aperam is a global player

Aperam is the spin off from ArcelorMittal of its Stainless Steel Division (since January 26, 2011)
2.5mT of flat stainless steel capacity & approximately 9500 employees worldwide

Aperam rankings (2012)
- Number 1 in South America
- Number 2 in Europe
- Number 6 in the World
Unique strengths
A large product range of specialties supported by strong R&D

- Stainless steel: 80%
- Electrical Steel: 11%
- Nickel Alloys & Specialities: 9%

115 employees in R&D
Isbergues (France): Stainless Steel
Timoteo (Brazil): Electrical and Stainless Steel
Imphy (France): Ni Alloys and Specialties

Corrosion resistance
(PREN = %Cr+3.3%Mo+16%N)

- FERRITIC
- DUPLEX
- 300 AUST
- 200 AUST

- Sea water 20 °C min. requirements: 31803
- Coastal Env. 20 °C min. requirements: 2304
- Water 20 °C min. requirements: 174 Cu

Nickel Alloys & Specialities 9%
Electrical Steel 11%
Stainless steel 80%
Stainless Steel and Alloys in Transport

Importance of stainless steel in transport
Stainless Steel and Alloys in Transport

Why stainless?

Growth of stainless steel in transport

• Aesthetical appearance (growing wealth)
• Economics
 – Growing emphasis on total life cycle cost
 – But… fear to leave comfort zone well-known materials
 – Move from short-term to long-term based decision making
• Increasing safety regulations
 – Crash & fire resistance
• More stringent emission regulations
 – Lower fuel consumption
 – Improve passenger capacity (increase payload)
Stainless Steel and Alloys in Transport

Market 2012
30.5 mT

- Catering / Appliances: 37%
- Transportation: 12%
- Architectural, Building & Construction: 17%
- Process / Resources: 19%
- Chemical / Petrochemical: 3%
- Others: 0%
Stainless Steel and Alloys in Transport

Some examples (grade selection)
Stainless Steel and Alloys in Transport

Passenger transport: car, bus, railway

Usage

- Decorative parts & trimming
- Structural & body parts
- Exhaust systems

Advantages

- Aesthetics
- Corrosion resistance (longer lifespan, less maintenance, …)
- Mechanical properties (crash resistance, lower weight, fuel consumption, …)
- Production cost (no need to paint all parts, only for decoration)

Grades used (typically)

- Ferritics (1.4003, …) as C-steel replacement (also for bulk wagons)
- Standard 304 (1.4301/1.4307), well known
- 301LN (1.4318) and 201LN (1.4371) for weight reduction and improved crash resistance (work hardened)
Stainless Steel and Alloys in Transport
Tank containers, trailers and wagons

Usage
• Inner shells and dished ends
• Outer cladding (2B or 2R-BA finish)
• Structural parts

Requirements transport of (dangerous chemical) products
• High corrosion resistance
• High surface quality (also colour)
• Dimensional tolerances for weight reduction (improved payload)
• Strict international regulations & standards

Grades used (typically)
• 1.4301/1.4307 (304/304L)
• 1.4404/1.4402 (316/316L), 1.4571 (316Ti)
• 1.4318 (301LN)
• New developments: duplex, 200-series, …
Stainless Steel and Alloys in Transport
Trends and solutions for the future

Important trends (in transport)

- Economics → cost reductions
- Environmental regulations

<table>
<thead>
<tr>
<th>In force</th>
<th>Regulation</th>
<th>Description</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Jan 2010</td>
<td>2005/33/EC</td>
<td>Fuel Sulphur content < 0.1% in EU ports & waterways</td>
<td>EU</td>
</tr>
<tr>
<td>1 Jul 2010</td>
<td>IMO Annex VI</td>
<td>Fuel Sulphur content < 1.0% in SECA</td>
<td>IMO SECA</td>
</tr>
<tr>
<td>1 Jan 2011</td>
<td>IMO Annex VI</td>
<td>NOx emissions reduced to Tier II limits, approx. 20% below Tier I limits</td>
<td>IMO Global</td>
</tr>
<tr>
<td>1 Jan 2012</td>
<td>IMO Annex VI</td>
<td>Fuel Sulphur content < 3.5%</td>
<td>IMO Global</td>
</tr>
<tr>
<td>1 Jan 2015</td>
<td>IMO Annex VI</td>
<td>Fuel Sulphur content < 0.1% in SECA</td>
<td>IMO SECA</td>
</tr>
<tr>
<td>1 Jan 2016</td>
<td>IMO Annex VI</td>
<td>NOx emissions reduced to Tier III limits, approx. 75% below Tier II limits</td>
<td>IMO ECA</td>
</tr>
<tr>
<td>1 Jan 2020</td>
<td>IMO Annex VI</td>
<td>Fuel Sulphur content < 0.5%</td>
<td>IMO Global</td>
</tr>
</tbody>
</table>

1 – SECA is Sulphur Emission Control Area
2 – ECA is Emission Control Area
3 – Subject to a technical review to be concluded 2013 this date could be delayed
Stainless Steel and Alloys in Transport
Lower cost alternative grades
Stainless Steel and Alloys in Transport
Trends and solutions for the future

Cost reductions

- Grades 304 and 316 are the most popular stainless steel grades
- But the price is volatile due to Nickel and Molybdenum price variations

When nickel price increases excessively, alternative grades become more attractive. Aperam is prepared
Stainless Steel and Alloys in Transport
Containerized LNG
Stainless Steel and Alloys for Transport
Trends and solutions for the future

LNG as marine fuel (and road)

• Driven by environmental restrictions for marine transport
• Storage infrastructure and containerized distribution for LNG (as marine fuel)
• Cryogenic environments (vacuum insulation) … and thus only austenitics into play.
• Weight reductions possible by improved mechanical properties

304 → Increase C to increase mechanical properties (incl. cold working)
1.4310 301

301LN (1.4318)

→ Substitute C by N to increase weldability, ductility and corrosion resistance
1.4318 301LN

304 → Nickel substituted by Manganese

= 201LN (1.4371)

Date 6/3/2014
Stainless Steel and Alloys for Transport
Trends and solutions for the future

Properties 301LN & 201LN vs 304(L)

- Corrosion resistance comparable to 304(L) (1.4301/1.4307)
 Reduced risk of intergranular corrosion due to low C → good weldability
- Improved strength to ductility ratio compared to 304(L)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Aperam</th>
<th>ASTM</th>
<th>EN</th>
<th>Grade</th>
<th>Aperam</th>
<th>ASTM</th>
<th>EN</th>
<th>Grade</th>
<th>Aperam</th>
<th>ASTM</th>
<th>EN</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-9L</td>
<td>304L</td>
<td>1.4307</td>
<td>300</td>
<td>≥170</td>
<td>≥220</td>
<td>630</td>
<td>≥485</td>
<td>≥520</td>
<td>54</td>
<td>≥40</td>
<td>≥45</td>
</tr>
<tr>
<td>18-7L</td>
<td>301LN</td>
<td>1.4318</td>
<td>360</td>
<td>≥240</td>
<td>≥350</td>
<td>765</td>
<td>≥550</td>
<td>≥650</td>
<td>50</td>
<td>≥45</td>
<td>≥40</td>
</tr>
<tr>
<td>16-5Mn</td>
<td>201LN</td>
<td>1.4371</td>
<td>360</td>
<td>≥310</td>
<td>≥330</td>
<td>720</td>
<td>≥655</td>
<td>≥650</td>
<td>55</td>
<td>≥45</td>
<td>≥45</td>
</tr>
</tbody>
</table>

(*) Values for cold rolled (2B) finish

- Higher work hardening rate allowing improved mechanical properties (finish 2H)
- Good toughness at low temperatures

Date 6/3/2014
Stainless Steel and Alloys for Transport
Trends and solutions for the future

301LN & 201LN for LNG tank containers

- Available as continuous rolled 2m wide at Aperam
- Pressure vessel standardization is important
- Proposal submitted to fully specify 301LN & 201LN (including toughness at -196°C)
Stainless Steel and Alloys in Transport
Exhaust Systems
Stainless Steel and Alloys for Transport
Trends and solutions for the future

Improved exhaust systems

- Evolution of stringent emission standards.
- Large fraction of energy lost as heat in exhaust system \(\rightarrow\) energy recovery!
- Stainless steel volumes per exhaust system will increase (no. of components), and all components will be in stainless steel.
- New corrosion conditions at cold parts, higher temperatures at hot end.
- New grades are being developed to resist up to 1000° C to offer products as an answer to anti-pollution norms and technologies.
Stainless Steel and Alloys for Transport
Trends and solutions for the future

Improved exhaust systems

- Aperam offers a wide range of grades dedicated to exhaust market.
- Hot End
 - Ferritic: K41X (1.4509), **K44X (1.4521)** for high temperature application
 - Austenitic: 1.4828
- Cold End:
 - Ferritic: **K33X (1.4513)** - (17% of Cr, stabilized Ti, with 0.9% of Mo)
 - Austenitic: 1.4301

Date 6/3/2014
Stainless Steel and Alloys for Transport
Summary & conclusions
Stainless Steel and Alloys for Transport

Summary & conclusions

- Economics focus more and more on life cycle cost
 - Lower production cost
 - Lower maintenance over (longer) lifespan
 - Fuel economy (energy recuperation)
 - Lower weight
- Environmental regulations
 - Lower emission standards and fuel consumption drives technology
- Safety standards
 - Improved crash resistance

… all favor using stainless steel solutions.

… Aperam is ready!
Stainless Steel and Alloys for Transport

The End